2019 Accounting Report on Carbon Emission Consumption for International Campus, Zhejiang University

January 2020

1 Preface	1
2 Introduction of International Campus, Zhejiang University	1
3 Report Year & Period	1
4 Accounting Boundaries	1
5 Energy Consumption Activity Level Calculation	2
5.1 Emission Sources and Energy Consumption Activity Level Calculation	2
5.2 Main Emission Sources and Energy Consumption in Key Buildings	3
6 Emission Factor (EF), Global Warming Potential (GWP), CO2 Equivalent Method (CO2e)	4
6.1 Emission Factor (EF)	4
6.2 Global Warming Potential (GWP)	5
6.3 Carbon Dioxide Equivalence (CO ₂ e)	5
7 Campus Carbon Emissions (Greenhouse Gas Emissions) List	5
7.1 Campus Carbon Emissions (Greenhouse Gas Emissions) List	5
7.2 Greenhouse Gas Emissions List of Key Buildings	7

Contents

1 Preface

International Campus, Zhejiang University is always committed into pilot tasks to lead the green campus construction in China. In 2019, the Library and the Learning and Teaching Building North A of the International Campus had been awarded the LEED O+M platinum certification. This means that the International Campus, Zhejiang University, has become the first university in the world that have passed the LEED v4.1 ARC platinum certification. Moreover, it has obtained the ECO-CAMPUS gold certification, becoming the first university in China that certified as ECO-CAMPUS. This report will directly show International Campus carbon emission and carbon intensity through accounting on both direct and indirect greenhouse gas emissions and energy consumption to encourage more teachers and students to pay attention to climate change, and to join this green campaign.

2 Introduction of International Campus, Zhejiang University

International Campus, Zhejiang University (International Campus for short) located in Haining, Zhejiang Province, with covering area of 666,667m² (1000mu) and building area of 399,300m². It was officially opening in November 2016, and by December of 2019, it has498faculties and staff and 1087 full-time students (181 international students), including 804 undergraduate students, 193 graduate students and 90 doctoral students.

3 Report Year & Period

This report is for 2019, from January to December.

4 Accounting Boundaries

Campus carbon emissions accounting is based on two boundaries, organizational boundaries and operational boundaries. The organizational boundaries on International Campus are consistent with its geographical boundaries; the operational boundaries include making estimates to direct or indirect carbon emissions about International Campus. Explanations are as follows:

➤ Scope 1

It accounts for direct greenhouse gas (GHG) emissions from sources that are owed or controlled by International Campus, principally the result of production of heat by boilers.

➢ Scope 2

It accounts for indirect GHG emissions associated with generation of purchased electricity caused by activities such as teaching and academic research.

Scope 3

It allows for the treatment of other indirect GHG emissions that are a consequence of activities of International Campus but occur from sources not owned or controlled by the campus, such as materials purchasing, employee commuting, business travel and so on.

This report will not calculate GHG emissions of hydrofluorocarbons (HFCs) of scope 1 and scope 3, because of inadequate equipment and incomplete statistics approaches. GHG emissions identification form is as below:

Operational	Emission Source	Main Emission	Energy	GUG	
Boundaries	Types	Sources	Consumption	GHG	Accounting
	Stationary combustion sources	Boiler	Natural gas	CO ₂ , CH ₄ , N ₂ O	Yes
G 1	Stationary combustion sources	Canteen	Natural gas	CO ₂ , CH ₄ , N ₂ O	Yes
direct GHG	non-stationary combustion sources	Shuttle Buses	Diesel	CO ₂ , CH ₄ , N ₂ O	Yes
emissions	non-stationary combustion sources	Official business vehicle	gasoline	CO ₂ , CH ₄ , N ₂ O	Yes
		Air-conditioning and extinguisher	Refrigerant	HFCs	No
Scope 2: indirect GHG emissions	Purchased electricity	Lighting, air-conditioning and related facilities	Power	CO ₂	Yes
Scope 3: other indirect GHG	non-stationary combustion sources	On and off campus commuting transportation excluding shuttle bus and official business vehicle	gasoline	CO2, CH4, N2O	No
emissions	non-stationary combustion sources	Airplane, train, bus and ship (business travel)	Gasoline, diesel and power	CO2, CH4, N2O	No

GHG Emission Sources Identification Form 4-1

5 Energy Consumption Activity Level Calculation

Calculation range: all buildings of the campus construction.

5.1 Emission Sources and Energy Consumption Activity Level Calculation

Operational	Main Emission Sources	Types of	Unit	Consumption	Record
Boundaries		Energy		Amount	Approach
Scope 1: direct	Boiler	Natural gas	NM ³	181,800	Gauge table
GHG emissions	Canteen	Natural gas	NM ³	38,800	Gauge table
	Shuttle bus	Diesel	L	13,300	Recorded by
					the supplier
	Shuttle bus	Gasoline	L	27,100	Recorded by
					the supplier
Scope 2: indirect	Lighting, air-conditioning	Power	kWh	11,432,400	Gauge table
GHG emissions	and related facilities				

2019 International Campus Main Emission Sources Calculation Form 5-1

5.2 Main Emission Sources and Energy Consumption in Key Buildings

In this report, we will calculate carbon emissions in detail on the following buildings to provide a strong data gist for the future measures in lowering carbon emissions.

No. Building		Function	Area	Power	Natural Gas
INO.	Building	Function	(m ²)	(kWh/a)	(m ³ /a)
1	No.1 Residential College	Student accommodation	27,408	1,406,745	
2	Academic Exchange Center	Hotel	25,296	1,174,564	
3	Laboratory Building	Science and research	19,779	416,836	
4	Gymnasium	Sports	14,669	350,133	4,808
5	Student Center	Canteen	12,748	1,188,160	41,468
6	Learning and Teaching	Taashina	10.750	314,599	34,968
0	Building North B	reaching	10,750		
7	Arts and Science Building	Administration	10,648	276,378	34,636
0	Learning and Teaching	Taashina	10.440	454,101	33,960
8	Building North A	Teacning	10,440		
9	Library	Library	9,840	469,076	32,008
10	ZJU-UoE Institute	Science and research	8,174	992,869	
11	ZJU-UIUC Institute	Science and research	7,238	211,209	
12	Serviced Apartment	Faculty accommodation	5,824	195,696	
13	Hospital	Clinic	2,130	68,116	

2019 International Campus Energy Consumption Activity Level Calculation on Major Functional Buildings Form 5-2

6 Emission Factor (EF), Global Warming Potential (GWP), CO2

Equivalent Method (CO₂e)

6.1 Emission Factor (EF)

Emission factor is used in greenhouse gas inventories to estimate emissions from materials in a certain measurement, which links the activity level data with GHG emissions. Power EF is based on *Announcement of Emission Factor for China's Reginal Power Grid Baseline in 2015* by Climate Change Department subordinated to National Development and Reform Commission; coal EF is based on *Evaluation Guide Rules of Recycle Energy Buildings Model Application Projects*; other EF data are guided by energy heat values from the page 283 of *China Energy Statistical Yearbook of 2008* and calculation values from GHG default emission coefficient of 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2.

T		EF		Creideline
Туре	CO_2	CH ₄	N ₂ O	Guideime
Power	81,120 tCO ₂ / (kWh)			EF value form re Reginal Power Grid Power EF in East China in the Page 4 of Announcement of Emission Factor for China's Reginal Power Grid Baseline in 2015 by Climate Change Department subordinated to National Development and Reform Commission
Coal	2.47 tCO ₂ /t			Evaluation Guide Rules of Recycle Energy Buildings Model Application Projects
Natural gas	209,000 tCO ₂ /m ³	3.73×10 ⁻⁴ tCH4/ten thousand m ³	3.73×10 ⁻⁵ tN2O /ten thousand m ³	Chapter 3 of GHG default emission coefficient of 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2
Vehicle gas	226,000 tCO2/L	8.16×10 ⁻³ tCH4/ten thousand L	2.61×10 ⁻³ tN ₂ O /ten thousand L	GHG default emission coefficient of 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2
Vehicle diesel	273,000 tCO2/L	1.44×10 ⁻³ tCH4/ten thousand L	1.44×10 ⁻³ tN ₂ O /ten thousand L	GHG default emission coefficient of 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2
Liquefied petroleum gas (stationary)	175,000 tCO2/L	0.278 tCH4/ten thousand L	0.0278 tN ₂ O /ten thousand L	GHG default emission coefficient of 2006 IPCC Guidelines for National Greenhouse Gas Inventories Volume 2

Typical Emission Factors and Related Introduction Form 6-6-1

			2010 Guidelines to Defra/DECC's GHG
V -1-1-	3.641×10 ⁻⁵	Conversion Factors for Company Reporting:	
venicie	tCO ₂ /km	 	Annex 6 Passenger Transport Conversion
			Tables:22 of 35,Table 6k
			2010 Guidelines to Defra/DECC's GHG
Tusin	3.641×10 ⁻⁵		Conversion Factors for Company Reporting:
Irain	tCO ₂ /km	 	Annex 6 Passenger Transport Conversion
			Tables:22 of 35,Table 6k
			2010 Guidelines to Defra/DECC's GHG
A : 1	2.052×10-4		Conversion Factors for Company Reporting:
Airpiane	tCO ₂ /km	 	Annex 6 Passenger Transport Conversion
			Tables:22 of 35,Table 6l

6.2 Global Warming Potential (GWP)

Global warming potential (GWP) is a measure of how much heat a greenhouse gas traps in the atmosphere up to a specific time horizon, relative to CO₂. The GWP of CO₂ is 1. The GWP in this report is from 2007 IPCC Guidelines for National Greenhouse Gas Inventories.

Global Warming Potential Form 6-2

GHG	Molecular Formula	GWP
Carbon dioxide	CO_2	1
Methane	CH ₄	25
Nitrous oxide	N ₂ O	298

Data from the 4th 2007 IPCC Evaluation Report

6.3 Carbon Dioxide Equivalence (CO2e)

CO₂e is an abbreviation of 'carbon dioxide equivalence' and is the internationally recognized measure of greenhouse emissions.

International Campus CO₂e equation: CO₂e= GHG_i X GWP_i

 GHG_i means the emission amount of greenhouse gas type i and the measurement unit is ton; GWP_i means the GWP of greenhouse gas type i.

7 Campus Carbon Emissions (Greenhouse Gas Emissions) List

7.1 Campus Carbon Emissions (Greenhouse Gas Emissions) List

1 Total Campus Carbon Emissions (Greenhouse Gas Emissions)

GHG emissions on International Campus in 2019: CO_2 9,832.60 tons, CH_4 0.0323 tons, N_2O 0.0098 tons, equivalent to CO_2e 9,832.64 tons. The direct GHG CO_2e is 562.40 tons, including sources such as natural gas of canteen and heat for teaching, learning and academic buildings in winter, diesel of shuttle bus and oil of official business vehicles; the indirect GHG CO_2e is mainly from purchased electricity, about 9,273.93 tons.

Details are listed as the below forms:

International	Campus	GHG	Emission	Graph '	7-1
---------------	--------	-----	----------	---------	-----

Operational	Sources	Туре	Unit	Annual			
Boundaries				Consumption	CO ₂	CH ₄	N ₂ O
				Reported			
Scope 1 Direct	Boiler	Natural gas	NM ³	181,800	3,800,600	68	7
GHG Emission	Canteen	Natural gas	NM ³	38,800	810,600	14	1
	Shuttle bus, official	Diesel	т	13,300	362,800	19	19
	business vehicles		L				
	Shuttle bus, official	Oil	т	27,100	612,500	221	71
	business vehicles		L				
Scope 2 Indirect	Lighting, air-conditioning	Purchased	1-W/b	11,432,400	92,739,300	0	0
GHG Emission	and related facilities	electricity	K VV II				

International Campus GHG Emission List Form 7-2 (Scope)

Emission Scope	Scope 1 Direct GHG	Scope 2 Indirect GHG	Total Emission
	Emission	Emission	
Amount (t)	562.40	9,273.93	9,836.33
Percentage %	5.72	94.28	100

International Campus GHG Emission List Form 7-3

GHG Emission	CO ₂	CH4	N ₂ O	Total Emission
-----------------	-----------------	-----	------------------	----------------

Emission (t)	9,832.60	0.0323	0.0098	
GWP	1	25	298	
CO ₂ e (t)	9,832.60	0.8065	2.9236	9,836.33
Percentage %	99.96	0.01	0.03	100

2 International Campus Carbon Emission Intensity

In 2019, the average CO_2e is 9.05t accounted on students, 6.20t on faculty and students, 24.62kg per square meter of campus construction and 11.49kg per square meter of floor area. Details are as below:

			U	
GHG Emission	CO_2	CH_4	N_2O	Total Emission
CO ₂ e Emission (t)	9,832.60	0.8065	2.9236	9,836.33
Student's average CO ₂ e (t)	9.05	0.0000	0.0000	9.05
CO ₂ e (t) on faculty and students	6.20	0.0000	0.0000	6.20
CO_2e (t) $/m^2$ of campus	33.14	0.0020	0.0073	24.63
construction				
CO_2e /m ² of floor area	14.75	0.0009	0.0034	11.49

International Campus GHG Emission List Form 7-4 (per unit)

7.2 Greenhouse Gas Emissions List of Key Buildings

Buildings contributed most to total energy consumption and average carbon emission of campus construction has been reported. Key accounting construction area is 164,944m², which includes 41.31% of construction area that put in use and 68.48% of total carbon emission. The maximum average carbon emission intensity of campus construction is from ZJU-UoE Institute, about 98.53kg CO₂e/m². Detail forms are as below:

Key Buildings' Average Carbon Emission Bar Graph 7-2

No.	Building	Construction	Power	Total CO ₂	Per Construction
		Area (m ²)	(kWh/a)	Emission (t)	Area (kg CO_{2e}/m^2)
1	ZJU-UoE Institute	8,174	992,869	805.42	98.53
2	Student Center	12,748	1,188,160	963.84	75.61
3	Residential College No.1	27,408	1,406,745	1,141.15	41.64
4	Library	9,840	469,076	380.51	38.67
5	Academic Exchange Center	25,296	1,174,564	952.81	37.67
6	Learning and Teaching Building	10,440	454,101	368.37	35.28
	North A				
7	Serviced Apartment	5,824	195,696	158.75	27.26
8	Hospital	2,130	68,116	55.26	25.94
9	Learning and Teaching Building	10,750	314,599	255.20	23.74
	North B				
10	ZJU-UIUC Institute	7,238	211,209	171.33	23.67
11	Arts and Science Building	10,648	276,378	224.20	21.06
12	Gymnasium	14,669	350,133	284.03	19.36
13	Laboratory Building	19,779	416,836	338.14	17.10
	Total	164,944	7,518,482	6,098.99	36.98

2019 Carbon Emission List of Key Buildings on International Campus Form 7-5